DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, together with the distilled versions varying from 1.5 to 70 billion specifications to build, experiment, and responsibly scale your generative AI ideas on AWS.
In this post, we demonstrate how to get begun with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to release the distilled versions of the designs too.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language design (LLM) developed by DeepSeek AI that utilizes reinforcement discovering to enhance reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. A key distinguishing function is its support learning (RL) action, which was used to refine the model's reactions beyond the basic pre-training and fine-tuning procedure. By including RL, DeepSeek-R1 can adapt more successfully to user feedback and goals, eventually improving both relevance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) approach, indicating it's geared up to break down complicated questions and reason through them in a detailed way. This guided thinking procedure allows the design to produce more accurate, transparent, and detailed answers. This model integrates RL-based fine-tuning with CoT abilities, aiming to produce structured responses while concentrating on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has actually caught the industry's attention as a versatile text-generation design that can be incorporated into various workflows such as representatives, rational thinking and data analysis tasks.
DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture permits activation of 37 billion parameters, making it possible for effective reasoning by routing inquiries to the most pertinent professional "clusters." This technique allows the design to concentrate on various issue domains while maintaining general effectiveness. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the reasoning capabilities of the main R1 design to more efficient architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more efficient models to mimic the behavior and reasoning patterns of the larger DeepSeek-R1 model, utilizing it as an instructor design.
You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend releasing this model with guardrails in location. In this blog, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid harmful content, and examine models against essential safety requirements. At the time of writing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop numerous guardrails tailored to various use cases and apply them to the DeepSeek-R1 design, enhancing user experiences and standardizing safety controls throughout your generative AI applications.
Prerequisites
To release the DeepSeek-R1 design, you require access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To ask for a limitation increase, create a limit increase request and connect to your account team.
Because you will be this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) consents to use Amazon Bedrock Guardrails. For guidelines, see Set up approvals to use guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails enables you to introduce safeguards, prevent damaging material, and assess designs against essential safety requirements. You can carry out safety steps for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to apply guardrails to evaluate user inputs and model responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The basic flow includes the following steps: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for reasoning. After getting the design's output, another guardrail check is used. If the output passes this last check, setiathome.berkeley.edu it's returned as the last result. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following areas show reasoning using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:
1. On the Amazon Bedrock console, choose Model brochure under Foundation models in the navigation pane.
At the time of composing this post, you can use the InvokeModel API to conjure up the model. It doesn't support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a service provider and pick the DeepSeek-R1 model.
The design detail page offers necessary details about the model's capabilities, rates structure, and execution standards. You can discover detailed use instructions, consisting of sample API calls and code bits for combination. The design supports numerous text generation tasks, consisting of content production, code generation, and question answering, using its support finding out optimization and CoT reasoning abilities.
The page also consists of release alternatives and licensing details to help you get going with DeepSeek-R1 in your applications.
3. To start using DeepSeek-R1, choose Deploy.
You will be triggered to configure the implementation details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters).
5. For Number of circumstances, enter a variety of circumstances (between 1-100).
6. For example type, choose your instance type. For optimal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested.
Optionally, you can set up innovative security and facilities settings, consisting of virtual private cloud (VPC) networking, service function approvals, and file encryption settings. For a lot of use cases, the default settings will work well. However, for production deployments, you might want to examine these settings to align with your company's security and compliance requirements.
7. Choose Deploy to start using the model.
When the deployment is total, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground.
8. Choose Open in playground to access an interactive interface where you can try out different triggers and change design specifications like temperature and optimum length.
When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for optimal outcomes. For instance, material for reasoning.
This is an excellent way to explore the model's reasoning and text generation capabilities before incorporating it into your applications. The playground supplies immediate feedback, helping you comprehend how the model reacts to different inputs and letting you tweak your prompts for optimum outcomes.
You can quickly evaluate the design in the play area through the UI. However, to conjure up the deployed model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run inference using guardrails with the deployed DeepSeek-R1 endpoint
The following code example demonstrates how to carry out inference using a released DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have created the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime customer, configures reasoning specifications, and sends out a demand to produce text based upon a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML solutions that you can deploy with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your data, and release them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart offers 2 practical approaches: utilizing the instinctive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's explore both approaches to assist you pick the technique that best suits your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to deploy DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, choose Studio in the navigation pane.
2. First-time users will be triggered to develop a domain.
3. On the SageMaker Studio console, choose JumpStart in the navigation pane.
The design internet browser shows available models, with details like the service provider name and model capabilities.
4. Look for DeepSeek-R1 to view the DeepSeek-R1 model card.
Each model card reveals crucial details, including:
- Model name
- Provider name
- Task classification (for example, Text Generation).
Bedrock Ready badge (if applicable), indicating that this design can be signed up with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to invoke the design
5. Choose the model card to see the design details page.
The design details page includes the following details:
- The model name and provider details. Deploy button to release the model. About and Notebooks tabs with detailed details
The About tab includes important details, such as:
- Model description. - License details.
- Technical specs.
- Usage standards
Before you deploy the model, it's suggested to evaluate the design details and license terms to confirm compatibility with your usage case.
6. Choose Deploy to proceed with deployment.
7. For Endpoint name, use the immediately created name or create a custom-made one.
- For example type ¸ pick an instance type (default: ml.p5e.48 xlarge).
- For Initial instance count, enter the variety of circumstances (default: 1). Selecting appropriate circumstances types and counts is vital for cost and efficiency optimization. Monitor your deployment to change these settings as needed.Under Inference type, Real-time inference is chosen by default. This is enhanced for sustained traffic and low latency.
- Review all setups for accuracy. For this model, we highly advise adhering to SageMaker JumpStart default settings and making certain that network isolation remains in place.
- Choose Deploy to release the model.
The implementation process can take numerous minutes to finish.
When implementation is complete, your endpoint status will change to InService. At this moment, the model is prepared to accept reasoning requests through the endpoint. You can monitor the implementation development on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the deployment is total, you can invoke the design utilizing a SageMaker runtime customer and incorporate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the required AWS approvals and environment setup. The following is a detailed code example that shows how to deploy and use DeepSeek-R1 for reasoning programmatically. The code for deploying the model is offered in the Github here. You can clone the notebook and run from SageMaker Studio.
You can run additional demands against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:
Tidy up
To prevent undesirable charges, complete the actions in this section to clean up your resources.
Delete the Amazon Bedrock Marketplace deployment
If you released the model utilizing Amazon Bedrock Marketplace, total the following steps:
1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace deployments. - In the Managed releases area, locate the endpoint you desire to delete.
- Select the endpoint, and on the Actions menu, select Delete.
- Verify the endpoint details to make certain you're erasing the right implementation: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and release the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get started. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting started with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies build ingenious options utilizing AWS services and accelerated calculate. Currently, he is focused on developing techniques for fine-tuning and optimizing the reasoning efficiency of big language designs. In his spare time, Vivek takes pleasure in treking, enjoying motion pictures, and trying different cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is a Professional Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about developing services that assist consumers accelerate their AI journey and unlock service worth.